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A Tutorial on

Binary Space Partitioning Trees

Bruce F. Naylor
Spatial Labs Inc.

I. Introduction

In most applications involving computation with 3D geometric models, manipulating objects

and generating images of objects are crucial operations. Performing these operations r equ i r e s

determining for every frame of an animation the spatial     relations between objects: how t h e y

might   in tersect   each other, and how they may    occlude    each other. However, the objects,

rather than being monolithic, are most often comprised of many pieces, such as by m a n y

polygons forming the faces of polyhedra. The number of pieces may be any where from t h e

100's to the 1,000,000's. To compute spatial relations between n polygons by brute force

entails comparing every pair of polygons, and so would require O(n2). For large scenes

comprised of 10 5 polygons, this would mean 1010 operations, which is much more t h a n

necessary.
The number of operations can be substantially reduced to anywhere from O(n log2 n )

when the objects interpenetrate (and so in our example reduced to ~106), to as little a s

constant time, O(1), when they are somewhat separated from each other. This can b e

accomplished by using Binary Space Partitioning Trees, also called BSP Trees or Partitioning

Trees. They provide a computational representation of space that simultaneouly provides a

search structure and a representation of geometry. The reduction in number of operations

occurs because Partitioning Trees provide a kind of "spatial sorting". In fact, they are a

generalization to dimensions > 1 of binary search trees, which have been widely used for

representing sorted lists. The figure below gives an introductory example showing how a

binary tree of lines, instead of points, can be used to "sort" four geometric objects, as opposed

to sorting symbolic objects such as names.
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Partitioning Tree representation of inter-object spatial relations

Constructing a Partitioning Tree representation of one or more polyhedral objects involves

computing the spatial relations between polygonal faces once and encoding these relations i n

a binary tree. This tree can then be transformed and merged with other trees to v e r y

quickly compute the spatial relations (for visibility and intersections) between the polygons

of two moving objects.
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 As long as the relations encoded by a tree remain valid, which for a rigid body is forever ,

one can reap the benefits of having generated this tree structure every time the tree is u s e d

in subsequent operations.  The return on investment manifests itself as substantially fas ter

algorithms for computing intersections and visibility orderings. And for animation a n d

interactive applications, these saving can accure over hundreds of thousands of frames.

Partitioning Trees achieve an elegant solution to a number of important problems i n

geometric computation by exploiting two very simple properties occurring whenever a single

plane separates (lies between) two or more objects: 1) any object on one side of the plane

cannot intersect any object on the other side, 2) given a viewing position, objects on t h e

same side as the viewer can have their images drawn on top of the images of objects on t h e

opposite side (Painter's Algorithm).
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Plane Power: sorting objects w.r.t a hyperplane

These properties can be made dimension independent if we use the term "hyperplane" t o

refer to planes in 3D, lines in 2D, and in general for d-space, to a (d-1)-dimensional s u b -

space defined by a single linear equation. The only operation we will need for constructing

Partitioning Trees is the partitioning of a convex region by a singe hyperplane into two child

regions, both of which are also convex as a result.
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Elementary operation used to construct Partitioning Trees

Partitioning Trees exploit the properties of separating planes by using one very simple b u t

powerful technique to represent any object or collection of objects:    recursive     subdivison      b y

   hyperp lanes  . A Partitioning Tree is the recording of this process of recursive subdivision i n

the form of a binary tree of hyperplanes. Since there is no restriction on what hyperp lanes

are used, polytopes (polyhedra, polygons, etc.) can be represented exactly. Affine a n d

perspective transformations can be applied without having to modify the structure of t h e

tree itself, but rather by modifying the linear equations representing each hyperplane (with

a vector-matrix product as one does with points).

A Partitioning Tree is a program for performing intersections between the hyperp lane ' s

halfspaces and any other geometric entity. Since subdivsion generates increasingly smaller

regions of space,  the order of the hyperplanes is chosen so that following a path deeper into

the tree corresponds to adding more detail, yielding a multi-resolution representation. This



leads to efficient intersection computations. To determine visibility, all that is required is

choosing at each tree node which of the two branches to draw first based solely on which

branch contains the viewer. No other single representation of geometry inherently answers

questions of intersection and visibility for a scene of 3D moving objects. And this is

accomplished in a computationally efficient and parallelizable manner.

II. Partitioning Trees as a Multi-Dimensional Search Structure

Spatial search structures are based on the same ideas that were developed in Computer

Science during the 60's and 70's to solve the problem of quickly processing large sets of

symbolic data, as opposed to geometric data, such as lists of people's names. It was discovered

that by first sorting a list of names alphabetically, and storing the sorted list in an array, o n e
can find out whether some new name is already in the list in log2 n operations using a b i n a r y

search algorithm, instead of n/2 expected operations required by a sequential search. This is

a good example of extracting structure (alphabetical order) existing in the list of names a n d

exploiting that structure in subsequent operations (looking up a name) to r educe

computation. However, if one wishes to permit additions and deletions of names while

maintaining a sorted list, then a dynamic data structure is needed, i.e. one using pointers. One

of the most common examples of such a data structure is the    binary     search     t r e e    .

A binary search tree is illustrated in the figure below, where it is being used to represent a

set of integers S = { 0, 1, 4, 5, 6, 8 } lying on the real line. We have included both the b i n a r y

tree and the hierarchy of intervals represented by this tree. To find out whether a

number/point is already in the tree, one inserts the point into the tree and follows the p a t h

corresponding to the sequence of nested intervals that contain the point. For a balanced t r ee ,

this process will take no more than O(log n) steps; for in fact, we have performed a b i n a r y

search, but one using a tree instead of an array. Indeed, the tree itself encodes a portion of

the search algorithm since it prescribes the order in which the search proceeds.
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This now bring us back to Partitioning Trees, for as we said earlier, they are a generalization

of binary search trees to dimensions > 1 (in 1D, they are essentially identical). In fact,

constructing a Partitioning Tree can be thought of as a geometric version of Quick Sort.

Modifications (insertions and deletions) are achieve by merging trees, analogous to merging

sorted lists in Merge Sort. However, since points do not divide space for any dimension > 1, w e

must use hyperplanes instead of points by which to subdivide. Hyperplanes always part i t ion

a region into two halfspaces regardless of the dimension. In 1D, they look like points since

they are also 0D sets; the one difference being the addition of a normal denoting the "greater

than" side. Below we show a restricted variety of Partitioning Trees that most clearly

illustrates the generalization of binary search trees to higher dimensions. (You may want t o

call this a k-d tree, but the standard semantics of k-d trees does not include represen t ing

continuous sets of points, but rather finite sets of points.)
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Extension of binary search trees to 2D as a Partitioning Tree

Partitioning Trees are also a geometric variety of Decision Trees, which are commonly u s e d

for classification (e.g. biological taxonomies), and are widely used in machine learning. Decision

trees have also been used for proving lower bounds, the most famous showing that sorting is

Ω( n log n) They are also the model of the popular "20 questions" game (I'm thinking of

something and you have 20 yes/no question to guess what it is). For Partitioning Trees, t h e

questions become "what side of a particular hyperplane does some piece of geometry lie".

III. Visibility Orderings

Visibility orderings are used in image synthesis for visible surface determination (hidden

surface removal), shadow computations, ray tracing, beam tracing, and radiosity. For a given

center of projection, such as the position of a viewer or of a light source, they provide a n



ordering of geometric entities, such as objects or faces of objects, consistent with the order i n

which any ray originating at the center might intersect the entities. Loosely speaking, a

visibility ordering assigns a priority to each object or face so that closer objects have pr ior i ty

over objects further away. Any ray emanating from the center or projection that intersects

two objects or faces, will always intersect the surface with higher priority first. The simplest

use of visibility orderings is with the "Painters Algorithm" for solving the hidden surface

problem. Faces are drawn into a frame-buffer in far-to-near order (low-to-high priority), so

that the image of nearer objects/polygons over-writes those of more distant ones.

 A visibility ordering can be generated using a single hyperplane; however, each geometric

entity or "object" (polyhedron, polygon, line, point) must lie completely on one side of t h e

hyperplane, i.e. no objects are allowed to cross the hyperplane. This requirement can always

be induced by partitioning objects by the desired hyperplane into two "halves". The objects on

the side containing the viewer are said to have visibility priority over objects on the opposite

side; that is, any ray emanating from the viewer that intersects two objects on opposite sides

of the hyperplane will always intersect the near side object before it intersects the far side

object.
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A single hyperplane cannot order objects lying on the same side, and so cannot provide a

total visibility ordering.
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Consequently, in order to exploit this idea, we must extend it somehow so that a visibility

ordering for the entire set of objects can be generated. One way to do this would be to create a

unique separating hyperplane for evey pair of objects. However, for n objects this would

require n2  hyperplanes, which is too many.

The required number of separating hyperplanes can be reduced to as little as n by using

the geometric version of recursive subdivision (divide and conquer). If the subdivsion is

performed using hyperplanes whose position and orientation is unrestricted, then the r e su l t

is a Partitioning Tree. The objects are first separated into two groups by some appropriately

choosen hyperplane (as above). Then each of the two groups are   independent ly    part i t ioned

into two sub-groups (for a total now of 4 sub-groups). The recursive subdivision continues i n

a similar fashion until each object, or piece of an object, is in a separate cell of the partitioning.

This process of partitioning space by hyperplanes is naturally represented as a binary tree.
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Visibility Ordering as Tree Traveral

How can this tree be used to generate a visibility ordering on the collection of objects? For

any given viewing position, we first determine on which side of the root hyperplane t h e

viewer lies. From this we know that all objects in the near-side subtree have higher pr ior i ty

than all objects in the far-side subtree; and we have made this determination with only a

constant amount of computation (in fact, only a dot product).  We now need to order t h e



near-side objects, followed by an ordering of the far-side objects. Since we have a recusively

defined structure, any subtree has the same form computationally as the whole t ree .

Therefore, we simply apply this technique for ordering subtrees recursively, going left o r

right first at each node, depending upon which side of the node's hyperplane the viewer lies.

This results in a traversal of the entire tree, in near-to-far order, using only O(n) operations,

which is optimal (this analysis is correct only if no objects have been split; otherwise it is > n).
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Intra-Object Visibility

The schema we have just described is only for i n t   e r   -object visibility, i.e. between individual

objects. And only when the objects are both convex and separable by a hyperplane is t h e

schema a complete method for determining visibility. To address the general unres t r i c ted

case, we need to solve int   r a   -object visibility, i.e. correctly ordering the faces of a single object.

Partitioning Trees can solve this problem as well. To accomplish this, we need to change o u r

focus from convex cells containing objects to the idea of hyperplanes containing faces. Let u s

return to the analysis of visibility w.r.t a hyperplane. If instead of ordering objects, we wish to

order faces, we can exploit the fact that not only can faces lie on each side of a hyperplane a s

objects do, but they can also lie    o n    the hyperplane itself. This gives us a 3-way ordering of:

near -> on -> far.



Viewer

Ordering of polygons: near -> on -> far

If we choose hyperplanes by which to partition space that always contain a face of an object,

then we can build a Partitioning Tree by applying this schema recursively as before, unt i l

every face lies in some partitioning hyperplane contained in the tree.
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Example intra-object Partitioning Tree

To generate a visibility ordering of the faces in this intra-object tree, we use the me thod

above with one extension: faces lying on hyperplanes are included in the ordering, i.e. at each

node, we generate the visibility ordering of near-subtree -> on-faces -> far-subtree.

Using visibility orderings provides an alternative to z-buffer based algorithms. They

obviate the need for computing and comparing z-values, which is very suspectible t o

numerical error because of the perspective projection.  In addition, they eliminate the n e e d

for z-buffer memory itself, which can be substantial (80Mbytes) if used at a sub-pixel

resolution of 4x4 to provide anti-aliasing. More importantly, visibility orderings pe rmi t

unlimited use of   t r a n s p a r e n c y    (non-refractive) with no additional computational effort, since

the visibility ordering gives the correct order for compositing faces using alpha blending. A n d

in addition, if a near-to-far ordering is used, then rendering completely occluded

objects/faces can be eliminated, such as when a wall occludes the rest of a building, using a

beam-tracing based algorithm.

Partitioning Tree as a Hierarchy of Regions



Another way to look at Partitioning Trees is to focus on the hierarchy of regions creating b y

the recursive partitioning, instead of focusing on the hyperplanes themselves. This view

helps us to see more easily how intersections are efficiently computed. The key idea is to th ink

of a Partitioning Tree region as serving as a    bounding      vo lume   : each node v  corresponds to a

convex volume that completely contains all the geometry represented by the subtree rooted

at v . Therefore, if some other geometric enitity, such as a point, ray, object, etc., is found t o

   n o t   intersect the bounding volume, then no intersection computations need be per formed

with any geometry within that volume.

Consider as an example a situation in which we are given some test point and we want t o

find which object if any this point lies in. Initially, we know only that the point lies somewhere

in space.
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By comparing the location of the point w.r.t. the first partitioning hyperplane, we can find i n

which of the two regions (a.k.a. bounding volumes) the point lies. This eliminates half of t h e

objects.
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By continuing this process recursively, we are in effect using the regions as a hierarchy of

bounding volumes, each bounding volume being a rough approximation of the geometry i t

bounds, to quickly narrow our search.
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For a Partitioning Tree of a single object, this region-based (volumetric) view reveals how

Partitioning Trees can provide a multi-resolution representation. As one decends a path of

the tree, the regions decrease in size monotonically. For curved objects, the regions converge

in the limit to the curve/surface. Truncating the tree produces an approximation, ala t h e

Taylor series approximations of functions.
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Tree Merging

The spatial relations between two objects, each represented by a separate tree, can b e

determined efficiently by merging two trees. This is a fundemental operation that can be u s e d

to solve a number of geometric problems. These include set operations for CSG modeling a s

well as collision detection for dynamics. For rendering, merging all object-trees into a single

model-tree determines inter-object visibility orderings; and the model-tree can b e

intersected with the view-volume to efficiently cull away off-screen portions of the scene a n d

provide solid cutways with the near clipping plane. In the case where objects are b o t h

transparent and interpenetrate, tree merging acts as a view independent geometric sort ing

of the object faces; each tree is used in a manner analogous to the way Merge Sort merges

previously sorted lists to quickly created a new sorted list (in our case, a new tree). The

model-tree can be rendered using ray-tracing, radiosity, or polygon-drawing using a f a r - t o -

near ordering with alpha blending for transparency. An even better alternative is mul t i -

resolution beam-tracing, since entire occluded subtrees can be elimanted without visiting t h e

contents of the subtree, and distance subtrees can be pruned to the desired resolution.

Beam-tracing can also be used to efficiently compute shadows.

All of this requires as a basics operation an algorithm for merging two trees. Tree merging

is a recursive process which proceeds down the trees in a multi-resolution fashion, going

from low-res to high-res. It is easist to understand in terms of merging a hierarchy of

bounding volumes. As the process proceeds, pairs of tree regions, a.k.a. convex bounding

volumes, one from each tree, are compared to determine whether they intersect or not. If



they do not, then the contents of the corresponding subtrees are never compared. This h a s

the effect of "zooming in" on those regions of space where the surfaces of the two objects

intersect. In the 2D example below, representing two convex polygons, tree merging will

require only O(log n) operations.

Merging Partitioning Trees

The algorithm for tree merging is quite simple once you have a routine for partitioning a

tree by a hyperplane into two trees. The process can be thought of in terms of inserting o n e

tree into the other in a recursive manner. Given trees T1 and T2, at each node of T1 t h e

hyperplane at that node is used to partition T2 into two "halves". Then each half is merged

with the subtree of T1 lying on the same side of the hyperplane. (In actuality, the algorithm

is symmetric w.r.t. the role of T1 and T2 so that at each recursive call, T1 can split T2 or T2

can split T1.)

Merge_Bspts : ( T1, T2 : Bspt ) -> Bspt
  Types

BinaryPartitioner : { hyperplane, sub-hyperplane }
PartitionedBspt : ( inNegHs, inPosHs : Bspt )

  Imports
Merge_Tree_With_Cell : ( T1, T2 : Bspt ) ->  Bspt    User defined semantics.
Partition_Bspt : ( Bspt, BinaryPartitioner ) ->  PartitionedBspt

  Definition
 IF T1.is_a_cell OR T2.is_a_cell
 THEN

VAL := Merge_Tree_With_Cell( T1, T2 )
 ELSE

Partition_Bspt( T2, T1.binary_partitioner ) -> T2_partitioned
VAL.neg_subtree :=

Merge_Bspts( T1.neg_subtree, T2_partitioned.inNegHs )
VAL.pos_subtree:=

Merge_Bspts( T1.pos_subtree, T2_partitioned.inPosHs )
 END



RETURN VAL
END Merge_Bspts

While tree merging is easiest to understand in term of comparing bounding volumes, t h e

actual mechanism uses sub-hyperplanes , which is more efficient. A sub-hyperplane is

created whenever a region is partitioned by a hyperplane, and it is just the subset of t h e

hyperplane lying within that region. In fact, all of the illustrations of trees we have used a r e

drawings of sub-hyperplanes. In 3D, these are convex polygons, and they separate the two

child regions of an internal node. Tree merging uses sub-hyperplanes to simulataneously

determine the spatial relations of four regions, two from each tree, by comparing the two

sub-hyperplanes at the root of each tree. For 3D, this is computed using two applications of

convex-polygon clipping to a plane, and there are three possible outcomes: intersecting, n o n -

intersecting and coincident. This is the only overtly geometric computation in tree merging;

everything else is data structure manipulation.

Intersect ing CoincidentNon-intersecting

Three cases when comparing sub-hyperplanes during tree merging

Good Partitioning Trees

For any given set, there exist an arbitrary number of different Partitioning Trees that c a n

represent that set. This is analogous to there being many different programs for computing

the same function, since a Partitioning Tree may in fact be interpreted as a computation

graph specifying a particular search of space. Similarly, not all programs/algorithms a r e

equally efficient, and not all searches/trees are equally efficient. Thus the question arises a s

to what constitutes a good Partitioning Tree. The answer is a tree that represents the set as a

sequence of approximations. This provides a multi-resolution representation. By pruning t h e

tree at various depths, different approximations of the set can be created. Each p r u n e d

subtree is replaced with a cell containing a low degree polynomial approximation of the s e t

represented by the subtree.
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Tree Pruning for Multi-Resolution Representations

In figure below, we show two quite different ways to represent a convex polygon, only t h e

second of which employs the sequence of approximations idea. The tree on the left subdivides

space using lines radiating from the polygonal center, splitting the number of faces in half a t

each step of the recursive subdivision. The hyperplanes containing the polygonal edges a r e

chosen only when the number of faces equals one, and so are last along any path. If t h e

number of polygonal edges is n, then the tree is of size O(n) and of depth O(log n). In contrast ,

the tree on the right uses the idea of a sequence of approximations. The first t h r e e

partitioning hyperplanes form a first approximation to the exterior while the next three fo rm

a first approximation to the interior. This divides the set of edges into three sets. For each of

these, we choose the hyperplane of the middle face by which to partition, and by doing so

refine our representation of the exterior. Two additional hyperplanes refine the interior a n d

divide the remaining set of edges into two nearly equal sized sets. This process proceeds

recursively until all edges are in partitioning hyperplanes. Now, this tree is also of size O(n)

and depth O(log n), and thus the worst case, say for point classification, is the same for b o t h

trees. Yet they appear to be quite different.
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Illustration of bad vs. good trees

This apparent qualitative difference can be made quantitative by, for example, considering

the expected case for point classification. With the first tree, all cells are at depth log n, so t h e

expected case is the same as the worst case regardless of the sample space from which a point

is chosen. However, with the second tree, the top three out-cells would typically consti tute

most of the sample space, and so a point would often be classified as OUT by, on average, two

point-hyperplane tests.  Thus the expected case would converge to O(1) as the ratio of

polygon-area/sample-area approaches 0. For line classification, the two trees differ not only

in the expected case but also in the worst case: O(n) vs. O(log n). For merging two trees t h e

difference is O(n2) vs. O(n log n). This reduces even further to O(log n) when the objects a r e

only contacting each other, rather overlapping, as is the case for collision detection.

However, there are worst case "basket weaving" examples that do require O(n2) operations.

These are geometric versions of the Cartesian Product, as for example when a checkerboard is

constructed from n horizontal strips and n vertical strips to produce n x n squares. These

examples, however, violate the Principle of Locality: that geometric features are local n o t

global features. For almost all geometric models of physical objects, the geometric features a r e

local features. Spatial partitioning schemes can accelerate computations only when t h e

features are in fact local, otherwise there is no significant subset of space that can b e

eliminated from consideration.

The key to a quantitative evaluation, and also generation, of Partitioning Trees is to u s e

expected case models, instead of worst case analysis. Good trees are ones which have low

expected cost for the operations and distributions of input of interest. This means, roughly,

that high probability regions can be reached with low cost, i.e. they have short paths from the

root the the corresponding node, and similarly low probability regions should have longer

paths. This is exactly the same idea used in Huffman codes. For geometric computation, t h e

probability of some geometric entity, such as a point, line segment, plane, etc., lying in some



arbitrary region is typically correlated positively to the size of the region: the larger t h e

region the greater the probability that a randomly chosen geometric entity will intersect t h a t

region.

To compute the expected cost of a particular operation for a given tree, we need to know a t

each branch in the tree the probability of taking the left branch, p - , and he probability of

taking the right branch p+ . If we assign a unit cost to the partitioning operation,  then we c a n

compute the expect cost exactly, given the branch probabilities, using the following

recurrence relation:

Ecost[ T ] =
IF T is a cell
  THEN 0
  ELSE 1 + p- * Ecost[ T- ] + p+ * Ecost[ T+ ]

This formula does not directly express any dependency upon a particular operation; those

characteristics are encoded in the two probabilities p -   and p+. Once a model for these is

specified, the expected cost for a particular operation can be computed for any tree.

As an example, consider point classification in which a random point is chosen from a

uniform distribution over some initial region R. For a tree region of r  with child regions r+

and r- , we need the conditional probability of the point lying in r+  and r- given that it lies i n

r . For a uniform distribution, this is determined by the sizes of the two child-regions relat ive

to their parent:

p +  = vol( r+  ) / vol( r )

p -  = vol( r-  ) / vol( r )

Similar models have been developed for line, ray and plane classification. Below we describe

how to use these to build good trees.

Converting B-reps to Trees

Since humans do not see physical objects in terms of binary trees, it is important to know

how such a tree be constructed from something which is more intuitive. The most common

method is to convert a boundary representation, which corresponds more closely to how

humans see the world, into a tree. In order for a Partitioning Tree to represent a solid object,

each cell of the tree must be classified as being either entirely inside or outside of the object;

thus, each leaf node corresponds to either an in-cell or an out-cell. The boundary of the s e t

then lies between in-cells and out-cells; and since the cells are bounded by the partitioning

hyperplanes, it is necessary for all of the boundary to  lie in the partitioning hyperplanes.



a

b c

de

f
g

a

b

c

d

e

f

1

2

3

7

4

5

6

a

b

cde
f

1

2

3

4

5

6

7⇒

B-rep Tree

B-rep and Tree representation of a polygon

Therefore, we can convert from a b-rep to a tree simply by using all of the face

hyperplanes as partitioning hyperplanes. The face hyperplanes can be chosen in any o r d e r

and the resulting tree will always generate a convex decomposition of the interior and t h e

exterior. If the hyperplane normals of the b-rep faces are consistently oriented to point t o

the exterior, then all left leaves will be in-cells and all right leaves will be out-cells. The

following algorithm summarizes the process.

 Brep_to_Bspt:  Brep b -> Bspt T

IF b == NULL
 THEN

T = if a left-leaf then an in-cell else an out-cell
 ELSE

h = Choose_Hyperplane( b )
{ b+ , b-, b0 } = Partition_Brep( b, h )
T.faces = b0

T.pos_subtree = Brep_to_Bspt( b+ )
T.neg_subtree = Brep_to_Bspt( b- )

 END

However, this does not tell us in what order to choose the hyperplanes so as to produce t h e

best trees. Since the only known method for finding the optimal tree is by exhaust ive

enumeration, and there are at least n! trees given n unique face hyperplanes, we m u s t

employ heuristics. In 3D, we use both the face planes as candidate partitioning hyperplanes ,

as well as planes that go through face vertices and have predetermined directions, such a s

aligned with the coordinates axes .

 Given any candidate hyperplane, we can try to predict how effective it will be using

expected case models; that is, we can estimate the expected cost of a subtree should we choose

this candidate to be at its root. We will then choose the least cost candidate. Given a region r

containing boundary b  which we are going to partition by a candidate h , we can compute



exactly p+  and p- for a given operation, as well as the size of b+  and b-. However, we can only

estimate  Ecost[ T+ ] and Ecost[ T- ]. The estimators for these values can depend only upon a

few simple properties such as number of faces in each halfspace, how many faces would b e

split by this hyperplane, and how many faces lie on the hyperplane (or area of such faces).

Currently, we use |b+|n for Ecost[ T+ ], where n  typically varies between .8 and .95, a n d

similarly for Ecost[ T - ]. We also include a small penalty for splitting a face by increasing its

contribution to b+ and b -  from 1.0 to somewhere between 1.25 and 1.75, depending u p o n

the object. We also favor candidates containing larger surface area, both in our heurist ic

evalution and by first sorting the faces by surface area and considering only the planes of t h e

top k faces as candidates.

One interesting consequence of using expected case models is that choosing the candidate

that attempts to balance the tree is usually not the best; instead the model prefers candidates

that place small amounts of geometry in large regions, since this will result in high probability

and low cost subtrees, and similarly large amounts of geometry in small regions. Balanced is

optimal only when the geometry is uniformly distributed, which is rarely the case. More

importantly, minimizing expected costs produces trees that represents the object as a

sequence of approximations, and so in a multi-resolution fashion.

.
Balanced Better

Balanced is not optimal for non-uniform distributions

Boundary Representations vs. Partitioning Trees

Boundary Representations and Partitioning Trees can be thought of as competing

alternatives or as complementary representations expressing difference aspects of geometry ,

the former being topological, the later expressing hierarchical set membership. B-reps a r e

well suited for interactive specification of geometry, expressing topological deformations, a n d

scan-conversion. Partitioning Trees are well suited for intersection and visibility calculations.

Their relationship is probably more akin to the capacitor vs. inductor, than the tube vs.

t ransistor .



The most often asked question is what is the size of a Partitioning Tree representation of a

polyhedron vs. the size of its boundary representation. This, of course, ignores the fact t h a t

expected cost, measured over the suite of operations for which the representation will b e

used, is the appropriate metric. Also, boundary representations must be supplimented b y

other devices, such as octrees, bounding volumes hierarchies, and z-buffers, in order t o

achieve an efficient system; and so the cost of creating and maintaining these s t r u c t u r e

should be brought into the equation. However, given the instrinsic methodological difficulties

in performing a compelling empirical comparision, we will close with a few examples giving the

original number of b-rep faces and the resulting tree using our currently implemented t r e e

construction machinery.

Data Set   brep tree faces r a t i o  nodes r a t i o E[T]  %nodes

hang glider man     189      406 2 . 1 4      390 2 . 0 6 1.7,  3.4,  21.4

space shuttle      575   1,006 1 . 7 5      927 1 . 6 1 1.2,  2.5,  13.2

human head 1      927   1,095 1 . 2 1   1,156 1 . 2 4 1.4,  4.4,  25.0

human head 2   2,566   5,180 2 . 0 1   5,104 1 . 9 9 0.2,  0.8,    9.1

Allosaurous   4,072   9,725 2 . 3 8   9,914 2 . 4 3 NA

Lower Manhattan   4,532   5,510 1 . 2 2   4,273 0 . 9 4 0.3,  0.6,  10.5

Berkeley CS Bldg.   9,129   9,874 1 . 0 8   4,148 0 . 4 5 0.4,  1.3,  14.6

Dungeon 1 4 , 0 6 1 2 0 , 3 2 8 1 . 4 4 1 5 , 7 3 2 1 . 1 2 0.1,   0.1,   1.7

Honda Accord 2 6 , 0 3 3 5 1 , 7 3 0 1 . 9 8 4 2 , 9 6 5 1 . 6 5 NA

West Point terrain 2 9 , 4 0 0   9,208 0 . 3 1    7636 0 . 2 6 0.1,  0.3,    4.2

US destroyer 4 5 , 8 0 2 9 1 , 9 2 8 2 . 0 0 6 5 , 8 4 6 1 . 4 3 NA

The first ratio is number-of-brep-faces/number-of-tree-faces. The second ratio is n u m b e r -

of-brep-faces/number-of-tree-nodes, where number-of-tree-nodes is the number of

internal nodes. The last column is the expected cost in terms of point, line and plane

classification, respectively, in percentage of the total number of internal nodes, and w h e r e

the sample space was a bounding box 1.1 times the minimum axis-aligned bounding box.

These numbers are pessimistic since typical sample spaces would be much larger than a n

object's bounding box. Also, the heuristics are controlled by 4 parameters, and t h e s e

numbers were generate, with some exceptions, without a search of the parameter space b u t

rather using default parameters. There are alos quite a number of ways to improve t h e

conversion process,  so it should be possible to do even better.



Binary Space Partitioning Tree Summary

A . Primary operations

1.    intersections   : between geometric sets (polyhedra, polygons, lines, points).

Interpret tree as a hierarchy of (bounding) volumes

2.     visibility      order ings   : viewer or light source dependent.

Interpret tree as a hierarchy of separating planes

B.  Secondary operations

1. set operations : union, intersection and difference between solid objects

2. collision detection

3. view-volume clipping : eliminating objects not within current field of view

a. includes solid cutaways

4. visible surface determination

5. shadows

6.  ray-tracing

7.  radiosity

8 . image segmentation

a. reconstruction of objects from video, MRI, CT, etc.

b. compression

C. Efficiency

1. Utilizing temporally invariant spatial properties

a. knowledge of spatial relations encoded in tree structure exploited

over many frames to reduce cost of computation for each frame

b.  tree structure is preserved by affine and perspective transformations; and so 

objects may move without changing the tree structure.    Not   true of octrees.

2.  Multi-resolution representation

Interpret a tree as a  hierarchy of convex bounding volumes.

a. intersections

IF    n o     intersection with bounding-volume

  THEN there can be    n o    intersections with contents of volume, so stop.

  ELSE continue with contents of volume, and so on, recursively.

Reduces O(n2) operation to O(n log n), or O(n)  to O(log n)

b.  rendering

Tree pruning permits discarding detail too small to see in current view

(no manual creation of a levels of detail)

3.  Visibility ordering



a. comparison to z-buffer

1. no numerical problems created by perspective projection

2. no z-buffer memory

3. unlimited use of transparency

4 anti-aliasing without subpixel color and z buffers: saves ~16X in

 this kind of memory (10Mb vs 160Mb), plus reduces computation.

5. for shadows, no quantization errors, which are amplified by

the inverse perspective projection, plus all of the above points.

b. visibility culling : do not draw objects occluded by closer objects, e.g. wall

occluding rest of a building. Achieved by near-to-far ordering using

multi-resolution beam-tracing.

c. transparency:  visibility ordering solves this for a single tree.

For multiple objects, the required ordering is achieve  by merging trees,

which can be thought of as merging "pre-sorted lists".

4.  Linear equations

Computations involve only linear equations - much cheaper than non-linear.

Curved surfaces are approximated as a sequence of piecewise linear approx.

which converge to the surface.

5.  Parallel ization

A partitioning tree   is   a computation graph (data-flow graph, flow chart),

describing all inherent parallelization available. Tree branches indicate

independent computation while tree paths indicate pipeline-able computation.
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